Generic Merge Sort In Scala

Many software engineers may not need to explicitly deal with type parameterization or generic types in their day-to-day job, but it’s very likely that the libraries and frameworks that they’re heavily using have already done their duty to ensuring static type-safety via such parametric polymorphism feature.

In a static-typing functional programming language like Scala, such feature would often need to be used first-hand in order to create useful functions that ensure type-safety while keeping the code lean and versatile. Generics is apparently taken seriously in Scala’s inherent language design. That, coupled with Scala’s implicit conversion, constitutes a signature feature of Scala’s. Given Scala’s love of “smileys”, a few of them are designated for the relevant functionalities.

Merge Sort

Merge Sort is a popular text-book sorting algorithm that I think also serves a great brain-teasing programming exercise. I have an old blog post about implementing Merge Sort using Java Generics. In this post, I’m going to use Merge Sort again to illustrate Scala’s type parameterization.

By means of a merge function which recursively merge-sorts the left and right halves of a partitioned list, a basic Merge Sort function for integer sorting might be something similar to the following:

A quick test …

Contrary to Java Generics’ MyClass<T> notation, Scala’s generic types are in the form of MyClass[T]. Let’s generalize the integer Merge Sort as follows:

The compiler immediately complains about the ‘<' comparison, since T might not be a type that supports ordering for '<' to make any sense. To generalize the Merge Sort function for any list type that supports ordering, we can supply a parameter in a curried form as follows:

Another quick test ...

That works well, but it's cumbersome that one needs to supply the corresponding Ordering[T] for the list type. That's where implicit parameter can help:

Testing again ...

Note that the 'if (lHead < rHead)' condition is now replaced with 'if (, rHead))'. That's because math.Ordering defines its own less-than method for generic types.

Let's dig a little deeper into how it works. Scala's math.Ordering extends Java’s Comparator interface and implements method compare(x: T, y: T) for all the common types, Int, Long, Float, Double, String, etc. It then provides all these lt(x: T, y: T), gt(x: T, y: T), …, methods that know how to perform all the less-than, greater-than comparisons for various types.

The following are highlights of math.Ordering’s partial source code:

Context Bound

Scala provides a typeclass pattern called Context Bound which represents such common pattern of passing in an implicit value:

With the context bound syntactic sugar, it becomes:

The mergeSort function using context bound looks as follows:

Note that ‘implicitly[Ordering[T]]’ is there for access to methods in math.Ordering which is no longer passed in with a parameter name.

Scala’s math.Ordered versus math.Ordering

One noteworthy thing about math.Ordering is that it does not overload comparison operators ‘<', '>‘, etc, which is why method lt(x: T, y: T) is used instead in mergeSort for the ‘<' operator. To use comparison operators like '<', one would need to import order.mkOrderingOps (or order._) within the mergeSort function. That's because in math.Ordering, comparison operators ‘<', '>‘, etc, are all defined in inner class Ops which can be instantiated by calling method mkOrderingOps.

Scala’s math.Ordered extends Java’s Comparable interface (instead of Comparator) and implements method compareTo(y: T), derived from math.Ordering’s compare(x: T, y: T) via implicit parameter. One nice thing about math.Ordered is that it consists of overloaded comparison operators.

The following highlights partial source code of math.Ordered:

Using math.Ordered, an implicit method, implicit orderer: T => Ordered[T], (as opposed to an implicit value when using math.Ordering) is passed to the mergeSort function as a curried parameter. As illustrated in a previous blog post, it’s an implicit conversion rule for the compiler to fall back to when encountering problem associated with type T.

Below is a version of generic Merge Sort using math.Ordered:

View Bound

A couple of notes:

  1. The implicit method ‘implicit orderer: T => Ordered[T]‘ is passed into the mergeSort function also as an implicit parameter.
  2. Function mergeSort has a signature of the following common form:

Such pattern of implicit method passed in as implicit paramter is so common that it’s given the term called View Bound and awarded a designated smiley ‘<%'. Using view bound, it can be expressed as:

Applying to the mergeSort function, it gives a slightly more lean and mean look:

As a side note, while the view bound looks like the other smiley '<:' (Upper Bound), they represent very different things. An upper bound is commonly seen in the following form:

This means someFunction takes only input parameter of type T that is a sub-type of (or the same as) type S. While at it, a Lower Bound represented by the '>:’ smiley in the form of [T >: S] means the input parameter can only be a super-type of (or the same as) type S.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code class="" title="" data-url=""> <del datetime=""> <em> <i> <q cite=""> <strike> <strong> <pre class="" title="" data-url=""> <span class="" title="" data-url="">

Current month ye@r day *